Ultrasound imaging of acute cardiac transplant rejection with microbubbles targeted to intercellular adhesion molecule-1.
نویسندگان
چکیده
BACKGROUND Noninvasive techniques for detecting acute cardiac transplant rejection are limited. We hypothesized that ultrasound contrast microbubbles targeted to the endothelial cell (EC) inflammatory marker intercellular adhesion molecule-1 (ICAM-1) would selectively bind to rejecting versus nonrejecting myocardium and that myocardial contrast echocardiography can therefore detect acute rejection. METHODS AND RESULTS Lipid-based microbubbles were conjugated to anti-rat ICAM-1 (MBICAM) or isotype control antibody (MBControl). In vitro MBICAM adhesion to cultured rat ECs, as assessed in a parallel plate flow apparatus, was greater to inflammatory versus normal ECs (11+/-3 versus 3+/-2 microbubbles/EC, P<0.005). In vivo abdominal heterotopic heart transplantation was performed in rats (rejection group: Brown Norway to Lewis strain; control group: Lewis to Lewis or Brown Norway to Brown Norway). Triggered myocardial contrast echocardiography was performed during intravenous MBICAM or MBControl (2.5x10(6)) injection on postoperative day 5. Myocardial videointensity from adhered MBICAM was significantly higher in rejecting (n=8) versus control (n=7) rats (10+/-4 versus 1+/-4 U, P=0.01). Postmortem histology showed normal myocardium in control rats, whereas allograft myocardium demonstrated grade III to IV rejection and strong immunohistochemical ICAM-1 staining. CONCLUSIONS Preferential adherence of ICAM-1-targeted microbubbles to rejecting versus nonrejecting rat cardiac transplant myocardium can be detected ultrasonically. Targeted microbubbles may thus offer a noninvasive ultrasound imaging technique for the detection of acute cardiac transplant rejection and other processes characterized by endothelial dysfunction.
منابع مشابه
Rhodamine-loaded intercellular adhesion molecule-1-targeted microbubbles for dual-modality imaging under controlled shear stresses.
BACKGROUND The ability to image incipient atherosclerosis is based on the early events taking place at the endothelial level. We hypothesized that the expression of intercellular adhesion molecule-1 even in vessels with high flow rates can be imaged at the molecular level using 2 complementary imaging techniques: 2-photon laser scanning microscopy and contrast-enhanced ultrasound. METHODS AND...
متن کاملAdhesion of bio-functionalized ultrasound microbubbles to endothelial cells by targeting to vascular cell adhesion molecule-1 under shear flow
The expression of certain endothelial cell adhesion molecules is increased during endothelial dysfunction or inflammatory activation. This has led to the concept of using microbubbles for targeted molecular imaging or drug delivery. In this approach, microbubbles with a specific ligand to receptors expressed at the site of specific diseases are constructed. The present study aimed to engineer a...
متن کاملUltrasound microbubbles for molecular diagnosis, therapy, and theranostics.
Ultrasound imaging is clinically established for routine screening examinations of breast, abdomen, neck, and other soft tissues, as well as for therapy monitoring. Microbubbles as vascular contrast agents improve the detection and characterization of cancerous lesions, inflammatory processes, and cardiovascular pathologies. Taking advantage of the excellent sensitivity and specificity of ultra...
متن کاملMicrobubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells.
BACKGROUND Preclinical atherosclerosis is associated with increased endothelial cell (EC) expression of leukocyte adhesion molecules (LAMs), which mediate monocyte adhesion during atherogenesis. Identification of cell-surface LAMs may uniquely allow assessment of endothelial function, but there are no in vivo methods for detecting LAMs. We tested a new microbubble designed to bind to and allow ...
متن کاملImproving the efficacy of therapeutic angiogenesis by UTMD-mediated Ang-1 gene delivery to the infarcted myocardium
This study aimed to verify the feasibility and efficacy of ultrasound-targeted microbubble destruction (UTMD)-mediated angiopoietin-1 (Ang-1) gene delivery into the infarcted myocardium. Microbubbles carrying anti-intercellular adhesion molecule-1 (ICAM-1) antibody were prepared and identified. The microbubbles carrying anti-ICAM-1 antibody selectively adhered to the interleukin (IL)-1β-stimula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 108 2 شماره
صفحات -
تاریخ انتشار 2003